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Feynman’s variational method applied to the randomly 
forced Duffing equation 
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Department of Physics, University College of Swansea, Singleton Park, Swansea SA2 8PP, 
UK 

Received 4 July 1979, in final form 10 October 1979 

Abstract. An approximation procedure, first introduced by Liicke for calculating the 
velocity correlation function in stationary homogeneous turbulence, is here applied to the 
Duffing equation driven by white noise. The approximation in question is based on the 
application of Feynman’s variational principle to the functional integral representation of a 
generator for the correlation functions. The spectral function for a statistically stationary 
state is calculated for various values of the damping and non-linear coupling constants arid 
compared with accurate results previously obtained by Bixon and Zwanzig and by Morton 
and Corrsin. The agreement is found to be poor except for the case of strong damping and 
weak non-linearity. Moreover, a simpler approximation obtained by statistical linearisation 
of the Duffing equation gives much better results. 

1. Introduction 

The Duffing equation describes a very simple non-linear system, namely a one- 
dimensional oscillator with linear and cubic terms in the restoring force and linear 
damping. For the driven oscillator the equation becomes, with a suitable choice of 
units, 

2 + pX + X + AX3 = F (  t ) .  

If the force F ( t )  is a stationary random function then a statistically stationary state is 
eventually attained in which viscous dissipation is balanced by the energy input from the 
driving force. The problem then arises of calculating the correlation functions such as 
( X ( t ) X ( t ’ ) )  for this state in terms of the known statistics of the force F. This model of a 
non-linear stochastic system has proved very useful in testing approximation schemes 
developed for more complicated physical systems. For example, Morton and Corrsin 
(1970) examined a large number of approximations ranging from simple linearisation to 
some rather elaborate methods based on truncated renormalised perturbation theory, 
while Bixon and Zwanzig (197 1) have considered an approximation procedure based 
on the projection operator theory of Zwanzig and Mori. There is very good agreement 
between the best theoretical results in these two papers and we assume that these give a 
close approximation to the truth. This view is also supported by the analogue 
computations of Morton and Corrsin. 

In the present paper we use the same model to test an approximation method 
introduced by Lucke (1978a) for the problem of stationary homogeneous turbulence. 
This is based on an application of Feynman’s variational principle to a functional 

0305-4470/80/051575 + 12$01.50 @ 1980 The Institute of Physics 1575 



1576 R Phythian and W D Curtis 

integral representation of a generator for the correlation functions. Calculations have 
been carried out for the turbulence problem (Liicke 1978a, b, Liicke and Zippelius 
1978) with encouraging results. However, the trial function used in this work is of an 
unnecessarily restricted form, and the removal of the restrictions leads to a more 
comp!icated approximation (Phythian 1980). No calculations using this have yet been 
carried out. It seems appropriate therefore to test this general procedure on something 
simpler than turbulence, and the model described above is a suitable choice. 

In 0 2 the approximation is derived starting from the functional integral represen- 
tation first obtained by Graham (1973). In Q 3 calculations of the spectral function for 
the case of white noise forcing are presented in graphical form, for various values of the 
damping p and the non-linear coupling constant A, and compared with the results 
obtained by Bixon and Zwanzig. The agreement is found to be poor except for strong 
damping and weak non-linearity. Moreover, it is found that a simpler approximation, 
based on statistical linearisation of the Duffing equation, gives much more accurate 
results. 

2. Derivation of the approximation 

Following previous work we shall assume the random force F ( t )  to be a Gaussian 
random function of zero mean and with correlation function 

(F( t )F( t ’ ) )= R( t -  t’). 

The approximation will be derived for general R but the numerical results obtained will 
be for the particular case of white noise. First of all the basic equation is rewritten as a 
first-order equation 

A slight generalisation of Graham’s result has been derived (Phythian 1977) for (1) 
which shows that averages of functionals of X may be calculated by means of a 
probability density functional given by 

where N is an infinite normalisation constant, Rap(?-  t’) denotes the correlation 
function (F,(f)F,(f’)), and the functional integration denoted by 5D[4]  is to be carried 
out over the subsidiary functions &(t) .  Substituting from (2) into (3), performing the 
Gaussian integration over &, and using the fact that the integration over + 1  gives the 
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delta functional 6 [ i l  -x2],we obtain 

P[xlK exp (-f 1 d r l  dt‘ y ( t ) Q ( t - t ’ ) y ( t ’ ) )  

where 

y ( t )  = X + p i  + x f Ax3 

and Q denotes the inverse of the correlation function R, i.e. 

J’ dt‘ Q ( t - t ’ ) R ( t ‘ - t f ’ ) = 6 ( t - t ” ) .  

Averages are then given by functional integrals of the form 

P [ ~ I )  = J D [ ~ I F [ ~ I P [ ~ I  

where the integration is to be carried out over all functions x ( t ) ,  the initial conditions 
having been banished to the infinitely remote past so that the statistically stationary 
state has been attained. 

Correlation functions may be conveniently expressed in terms of the generating 
functional 

where S is given by the expression 

J’ d t  h(t)x(t)+$ dt dt’ y ( t ) Q ( t -  t ’ ) y ( t ’ ) .  J ’ I  (7) 

For example, we have 

The mean value ( X ( t ) )  is seen to be zero since P[x] is an even functional of x. The basic 
idea of Liicke’s theory is to use the Feynman variational principle to obtain an 
approximation for 2 from ( 6 ) .  We have the inequality 

J’ D[xl e-’> (1 0 1 x 3  e-’() e +-s(~)[I (8) 

where ( . . . )o denotes an average performed with the probability density 

e + ( ~ / i  ~ ~ x l  e-+ 

and So is a suitable trial functional. In order that the integrals be calculable it is 
necessary to take So as a sum of linear and quadratic terms in x. However, by optimising 
the inequality with respect to the coefficient functions in So one hopes to obtain a useful 
approximation for 2. We therefore take 

dtr)( t )x( t )+$ d t  dt’A(t,  t‘)x(t)x(t’) l J  
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where 77 is arbitrary and A is a positive definite kernel, so that 

I D [ x ]  e-S0= constant x Jde t  Gexp [ 3 I I v(f)G(t,  t’)q(f‘)] 

where G is the kernel inverse to A.  This may be rewritten 

i T r l g G + f I  I v(t)G(t, t’)q(t‘)]. (10) 

To proceed further it is convenient to introduce some diagram representations. Let 
us first rewrite ( 5 )  in the form 

where integrations are to be carried out over repeated t’s, and where 

q( t - t1)= 

M ( t t l t z f 3 )  = A S ( t - t l ) S ( t - t z ) S ( t -  f3). 

The expression for S may now be written 

+- c( f1  . , f 6 ) X ( t l ) .  a X ( f 6 )  
6! ‘I 

where a, b, c are symmetric functions given by the following diagrams: 

-@- = @-----.@- 

a = L I  [ ++-----a 3 

Here the broken line denotes 0 and the square brackets indicate that the expression be 
symmetrised. For example, the equation for b given in full is 

b ( t i  t 2 t 3 t 4 )  = 6A [q( t - t l ) Q (  t - t’)8 ( t z  - t ‘ )8  ( t 3  - t’)8 ( f 4  - t’) I 
+ q( t - t 2 )  Q( t - t’)S ( t 3  - t’)6 ( t 4  - t’)8 ( t i  - t’) 
+ 4 ( t - t 3 ) Q ( t -  t ’ )8 ( t4 - t ’ )8 ( t , - t ’ )8 ( t , -  t’) 

+ q( t - t 4 )  Q( t - t’)8 ( t i  - t’)8 ( t Z  - ?’)a( t 3  - t ’ ) ] .  

The quantity (S-So)o clearly involves averages of products of x’s with as many as six 
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factors. Denoting G ( t ,  t ' )  by t- t' and q ( t )  by t-• it is easily verified that 

( x ( t ~ ) ~  = -tl- = -1 GO,,  t ) q ( t )  

t1- 
t 2  - (X(tdX(t2))O = 11- t 2  + 

Again the brackets indicate a symmetrisation in the t's of the line endings. 

with the following lower bound on W = Ig 2 
After some straightforward but tedious analysis using (lo), (1 1) and (13) we emerge 

- -  18 1 >9( - % + constant 

A stationary value of V with respect to variations in q and A is given by the conditions 

sv/sq = 0 GV/SA = 0 
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which lead to the equations 

For h = 0 it is seen that a particular solution of (15) is given by q = 0 with A satisfying 
the equation 

We shall assume that the maximum of V is attained, at least for sufficiently small h, for 
the solution of (15) which reduces as h -+ 0 to this particular solution. In principle it 
should be possible to check this by examining the second-order variation of V but the 
analysis is complicated and will not be attempted here Our approximation for W is 
then given by (14) with q and A (and hence G) expressed in terms of h by means of (15). 

Denoting this approximation by W we can now calculate approximate correlation 
functions by differentiating W with respect to h. Using a slightly abbreviated notation 
we have 

S W  S V  SVSG S V S q  ---+---++-- 
6h S h  SG Sh Sq ah 

which, because of the stationary point conditions, is just 6 V/Sh. Using (14) this is seen 
to be Gq. The approximate mean value LSfi/Sh]h,o is therefore [ G T ! ] ~ - . ~  which is zero. 
as expected, since 7 = 0 for h = 0. We now calculate the second derivative: 

6’w S2V 6G S 2 V  Sq S2V -=-- +----+-- 
Sh2 S h 2  Sh 6GSh Sh 6qSh 

Setting h = 0 and using (15) gives 
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Thus our approximate correlation function is just G determined by (16). The approxi- 
mation has a simpler structure than the one derived in the same way for the turbulence 
problem (Phythian 1980). There it was found necessary to introduce a type of vertex 
function and to solve two coupled equations for this quantity and the correlation 
function. The difference seems to arise from the fact that the non-linearity in the 
present case is cubic, rather than quadratic as in the Navier Stokes equation, so that the 
probability density functional is even in x .  

Before deriving the final form of the equation it is instructive to write down the 
perturbative solution for G. Denoting the correlation function for tRe case of zero A ,  
which is seen to he a - ’ ,  by * we derive from (16) the series 

= * - J -  
2 

The exact series obtained by expanding the functional integrals as power series in A ,  or  
directly from the equation of motion, agrees with that given above to order h 2  except for 
the appearance of an extra term 

in second order. 

a, b, c given in (12). In terms of Fourier transforms defined, for example, by 
The final form of the approximation is obtained by making use of the expressions for 

G(t)  = - dw &U)  eiw‘ 
27r ‘ I  

( & ( U )  is therefore our approximation for the spectral function) we get 

A ( w ) - Z ( w ) = - -  ~ ( w ’ ) [ d ( w ) ( l - W 2 ) 1 d ( w ’ ) ( l - . W ’ 2 ) ]  
3A m- 5 

with 

G ( w )  = l / A ( w )  

Z ( w )  = [(l- w2)2+ /L2Cd2]d(0). 

and 
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3. Numerical results 

We now assume the random force F ( t )  to be a white noise function and, without loss of 
generality, we take 

R ( t )  = 8 ( t )  

d ( w )  = 1. 

so that 

Putting 

I (1 - w 2 ) G ( w )  = y 

we have 

& U ) =  ( l - w 2 ) 2 + p  2 w 2 +-(P+-y- 3A ( 7T 

A simple algebraic transformation now gives 

1 G ( w ) =  4 
w - 2w2(5  - 2*2) + t2 

where 5 and are both positive and satisfy 

We have solved these equations for the following pairs of values (p,  A ) :  (2, 0 - 2 5 ) ,  
( 2 ,  l), ( 2 ,  2 ) ,  ( 2 ,  3) ,  (0.5,O. l), (0.5,0.25),  and the corresponding spectral functions 
(?(U) are plotted in figures 1-6 together with the best theoretical results of Bixon and 
Zwanzig. It will be seen that the approximate spectral function is positive, as required 
by realisability, and displays the correct qualitative shape in all cases but the numerical 
agreement is rather poor except in the case of large damping and weak non-linearity. 

The graphs also show for comparison the approximation obtained by statistical 
linearisation. This follows from the replacement of the Duffing equation by the 
linearised one: 

X + p X  + X  + 3A(X2)X  = F ( t )  

and is described by Morton and Corrsin (1970) and, more recently and extensively, by 
Budgor et a1 (1976). This approximation also gives a spectral function of the form (18) 
but with 6 and CC, now given by 

3A 5=1+---. 
2 45* 

*=- F 
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W 

Figure 1. The spectral function & ( U )  plotted as a function of w for the case I* = 2, A = 0.25. 
The upper continuous curve shows the ‘exact’ results of Bixon and Zwanzig and the lower 
continuous curve the present approximation. The broken curve shows the results obtained 
from an alternative approximation based on statistical linearisation. 

Note that this choice of 5 and $ satifies the first of equations (19) but not the second. It 
will be apparent from the graphs that this approximation, while simpler than that 
derived from the variational approach, is much superior. 

4. Conclusion 

The Feynman variational principle has been used above, in the manner suggested by 
Lucke in his treatment of the turbulence problem, to derive an approximate spectral 
function for the Duffing equation driven by white noise. Although the approximation is 
of a simple form and gives a positive spectral function its numerical accuracy is poor. 
Moreover, it was seen that an even simpler approximation obtained by a straightfor- 
ward statistical linearisation of the Duffing equation is far superior. At first sight this 
seems rather strange since the variational method, with a general quadratic trial 
functional, might be expected to yield the best approximation obtainable by linearisa- 
tion. The basic difficulty seems to lie in the fact that the variational method is used to 
approximate a mathematical construct, the generating functional, rather than the 
quantities of interest (the correlation functions). Since the correlation functions are 
obtained by differentiation of the generating functional it is clearly possible to have a 
good approximation for the latter which gives a poor approximation for the former. It is 
of interest to note that a closer inspection of the exact and approximate functionals W 
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w 

Figure 2. As for figure 1 but with = 2, A = 1 

w 

Figure 3. As for figure 1 but with p = 2, A = 2. 
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W 

Figure 4. As for figure 1 but with /.t = 2 ,  A = 3.  

W 

Figure 5. As for figure 1 but with /.t = 0.5, A = 0.1. 

and W, using perturbation theory, suggests that they differ by an infinite quantity so the 
rriethod may not even give a good approximation for the generating functional. 

There are no obvious reasons for believing that the method would be more 
successful for other non-linear stochastic problems such as turbulence. Moreover, as 
was mentioned earlier, the approximation loses its simplicity in the case of turbulence 
unless arbitrary restrictions are imposed on the trial functional as in the theory of 
Liicke. We conclude that the method is probably unreliable as a quantitative theory of 
turbulence and should perhaps best be regarded as providing yet another realisable 
model which may have qualitative features in common with real turbulence. 
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w 

Figure 6. As for figure 1 but with p = 0.5,  A = 0.25. 
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